Multipoint Iterative Methods for Solving Certain Equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Optimal Multipoint Methods for Solving Nonlinear Equations

A general class of three-point iterative methods for solving nonlinear equations is constructed. Its order of convergence reaches eight with only four function evaluations per iteration, which means that the proposed methods possess as high as possible computational efficiency in the sense of the Kung-Traub hypothesis (1974). Numerical examples are included to demonstrate a spectacular converge...

متن کامل

Interpolatory multipoint methods with memory for solving nonlinear equations

A general way to construct multipoint methods for solving nonlinear equations by using inverse interpolation is presented. The proposed methods belong to the class of multipoint methods with memory. In particular, a new two-point method with memory with the order ð5þ ffiffiffiffiffiffi 17 p Þ=2 4:562 is derived. Computational efficiency of the presented methods is analyzed and their comparison ...

متن کامل

Multipoint methods for solving nonlinear equations: A survey

Multipoint iterative methods belong to the class of the most efficient methods for solving nonlinear equations. Recent interest in the research and development of this type of methods has arisen from their capability to overcome theoretical limits of one-point methods concerning the convergence order and computational efficiency. This survey paper is a mixture of theoretical results and algorit...

متن کامل

New iterative methods with seventh-order convergence for solving nonlinear equations

In this paper, seventh-order iterative methods for the solution ofnonlinear equations are presented. The new iterative methods are developed byusing weight function method and using an approximation for the last derivative,which reduces the required number of functional evaluations per step. Severalexamples are given to illustrate the eciency and the performance of the newiterative methods.

متن کامل

‎Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices

A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$‎. ‎An $ntimes n$‎ ‎complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$)‎. ‎In this paper‎, ‎we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Computer Journal

سال: 1966

ISSN: 0010-4620,1460-2067

DOI: 10.1093/comjnl/8.4.398